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Mechanical behaviour of brittle cement grains 
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Before attempting a modelling approach to the crushing mechanisms of "cement clinker" it 
was necessaryto characterize the mechanical behaviour of this material up to breakage. The 
diametrical compressive test was chosen, as it is the closest to the typical loading within 
a packing of grains and a very convenient experimental approach for the analysis of 
mechanical behaviour law up to fragmentation of brittle granular material. The 
modellization of the grain as a hard brittle core surrounded by a thin crumbly skin leads us to 
associate the contact setting with the crumbly skin behaviour and the breakage with the 
brittle core behaviour. This analysis allowed us to define scaling laws for the skin thickness 
and breakage load. The breakage force increases as a power law of the grain diameter with 
an exponent of 1.5 and it is shown that the mean prefactor K0 is an intrinsic characteristic 
parameter proportional to the tenacity of the material. 

1. Introduction 
Breaking grains in order to obtain a finely divided 
powder is an important process in many industrial 
applications. However in most cases it is energetically 
very inefficient. 

This is especially true for civil engineering materials 
such as cement where 40% of the energy consumed is 
devoted to the crushing process. The material we 
tested "cement clinker", consists of granules of cement. 
It is the physical state of cement powder at furnace 
output just before crushing. 

The mechanical properties of the material to be 
broken up are obviously a key element in understand- 
ing the fragmentation process. The literature is poor 
on this subject and the most important characteriza- 
tion of clinker mechanical behaviour was made by 
Forgeron [1]. Cement clinker itself was not studied, 
but instead samples of heat sintered cement powder, 
a reconstituted material whose mechanical properties 
differ widely from cement clinker itself. In the present 
study we chose to use real "cement clinker" in order to 
be closer to the industrial application. 

2. Materials and methods 
In industrial breakers the grains of material to be 
crushed are submitted to compressive load up to 
breakage. In the laboratory instead we used the dia- 
metrical compressive load test, which is very conve- 
nient for the analysis of the mechanical behaviour of 
a brittle granular material. All the loading tests are 
conducted on a universal testing machine (Instron 
4505), with imposed crosshead speed, under quasi- 
static conditions. Crosshead displacement and load 
are recorded as a function of time. The diameter of the 
granules of clinker used in the tests ranges from some 

tenths of a mm to several cm. In order to limit disper- 
sion we retained only spheroid grains of uniform as- 
pect. This criterion leads us to exclude grains with too 
heterogeneous a structure (this structure results from 
the manufacturing process). Practically, due to the 
available testing machine configuration, the diameter 
of the smallest grains studied was of millimeter scale. 

For  a structurally heterogeneous material such as 
cement clinker we had to consider two very distinct 
stages as shown in Fig. 1: the initial setting of contacts 
(1 in the figure) - a local crushing process controlled 
by the macroscopic roughness of the particle - fol- 
lowed by the classical linear behaviour of brittle ma- 
terial up to breakage (2 in the figure). The main differ- 
ences with glass balls [2] (used as the brittle materials 
reference) appeared in the first part of the compressive 
load test. Creating an area of contact is different in the 
two cases. The modellization of the grain as a hard 
brittle heart of diameter ~ dp surrounded by a thin 
crumbly skin lead us to associate the contact setting 
with the crumbly skin behaviour and the breakage 
with the brittle heart behaviour (numbered respective- 
ly 1 and 2, in Fig. 1). 

The fracture load (i.e. the load needed to create 
a cross crack) follows, as for a glassy material, a power 
law as a function of the particle diameter with an 
exponent close to 1.5. The dispersion we observed on 
experimental results can be analysed statistically using 
Weibull laws, or better with a specific failure criterion 
which allows us to define a material-dependent ten- 
acity-like parameter characterizing the hard brittle 
core of the grain. 

In contrast to load, displacement exhibits non- 
classical behaviour. Analysis of cycling loading tests 
allows us to define the displacement at the end of the 
crushing stage of contact setting and gives us a simple 
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Figure 1 Typical load-displacement curves obtained in similar con- 
ditions for grains of equal size (mean diameter 6 mm). In spite of 
their disparity the general shape of the the curves suggests a separ- 
ation into two parts: 1. surface crushing: flattening of contact areas 
by local crumbling; 2. Classical linear behaviour up to breakage of 
the grain. 
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Figure 2 Geometrical model of the grain shape at the end of the 
crushing stage. The crumbling process of the skin is assumed to be 
local and confined to the vicinity of the contact areas. 

rule to determine its value directly on the classical 
load-displacement curve. This value corresponds to 
half the crumbly skin thickness in our model (Fig. 2). 
Its linear dependence on grain diameter is confirmed 
by surface contact measurements as will be seen later. 

Let us first discuss the second stage because of its 
greater importance for the breaking process. 

3. Behaviour law before failure 
The later part of the loading curve shows the typical 
behaviour of a brittle material up to failure. In order 
to scale breakage load and displacement with grain 
size, we analysed the loading curves of about 400 
grains (diameter range 1.1-15 mm) tested up to break- 
age in similar conditions. 

3.1. B reakage  load 
We attempted to fit the variation of the breakage load 
Fr with diameter 4 to a power law 

F, = K r ~ (1) 

The analysis (Fig. 3) leads to a prefactor mean value 
Ko of 3.36 and an exponent of 1.5 _+ 0.1, which is 
consistent with the empirical Bond's law [3] (fracture 
energy scaling 42"s). The transition size (or "critical 
size" in Kendall's sense [-4]) below which energy in- 
creases inversely with grain diameter could not be 
observed although we tested 0.5 mm diameter grain 
beds. 

The dispersion on F, values is important, but all the 
experimental points are included between two limiting 
curves following a power law with the same exponent 

and prefactors equal to 1.6 (lower curve) and 6.0 
(upper curve) respectively. This suggests a dispersion 
law for the prefactor K independent of the diameter 4- 

This plot suggests that it is possible to correct for 
the diameter effect by introducing a reference diameter 
4o, the equivalent breaking force F0 that would be 
needed to break a grain of diameter 40. This equi- 
valent force F 0 is related to F through 

Choosing a unit reference diameter 4o is equivalent to 
studying the prefactor K of Equation (1). 

Assuming a ~ 3/2 this prefactor has the dimension 
of tenacity (Nm- 1/2). Applying the concepts of brittle 
fracture mechanics [5] to the hard core of the grain 
and using a scaling argument we derive the relation 
between K and the tenacity Ko as follows. 

Let cr denote the average stress applied to a struc- 
ture made from a material of tenacity Kc. The ratio 
Kc/cy is dimensionally equivalent to the square root of 
a length L called the "Griffith length" [6]; that means 
the length of the largest macroscopic fault allowable 
under these conditions. Let 4 be a characteristic size of 
the structure. At breakage L has the value 4 and the 
rupture load Fr is of the order of ~42. According to 
the definition of L we have: 

Fr ~ K~42/x~ (3) 

From a comparison of Equations (1) and (3) we may 
conclude that the prefactor K is proportional to the 
tenacity K~ and can be studied as an intrinsic feature 
of the material. 

The statistical distribution of K can be fitted to 
various trial functions. We made various attempts 
along these lines: first a Weibull-like law: 

F(K) = 1 -- exp( - (K/Ko) ~) (4) 
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Figure 3 Breakage load Fr versus grain diameter d2: log-log plot. 
The breakage force increases as a power law of the grain diameter 
with an exponent of 1.5 and a mean prefactor of 3.36 (middle curve). 
The experimental points are included between two limiting curves 
following the same power law with prefactors respectively equal to 
1.6 (lower curve) and 6.0 (upper curve). This suggests a dispersion 
law for the prefactor K independent of the diameter {. 

This law with a high exponent (0~=4.18 and 
Ko = 3.83) fits correctly the first part of the K distri- 
bution (values less than the average), but a lower 
exponent (a = 2.26 and Ko = 3.53) gives a better fit 
above the average value and takes into account the 
large force tail of the K distribution. 

As pointed out by Neville [7] a distribution law of 
the form: 

Figure 4 Statistical study of the cumultive probability of the pre- 
factor K of the power law of Equation 1 (breakage load Fr versus 
grain diameter d~). For the large values of K belonging to the tail of 
the distribution the experiment deviates from the fit but it is readily 
seen in Fig. 3 that the difference is independent of 4- 
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F(K)  = (K/Ko)~/1 + ( K / K o )  ~ (5) 

is a good representation of the statistical criterion for 
failure in linearly elastic materials containing distribu- 
tions of microcracks such as cement clinker. In Fig. 4 
such a distribution with an exponent a = 5.45 and 
K0 = 3.36 gives a better fit for the overall experiment. 
It is noteworthy that Ko corresponds to the averaged 
value (over all experimental points) of the prefactor 
K of the breakage power law (Fr versus d~). For  the 
large values of K belonging to the tail of the distribu- 
tion the experiment deviates from the fit, but it is 
readily seen in Fig. 3 that the difference is independent 
of the grain diameter. At the other end of the distribu- 
tion, when K tends towards zero, the two functions 
F(K)  of Equations (4) and (5) tend towards a power 
law (K/Ko) ~ with a high exponent as a consequence of 
the existence of a cut-off at low breakage load. 

These results allow us to define, for each grain, 
a mean breakage load Fc related to the diameter (~ by: 

F~ = Ko~ ~ (6) 

with an exponent ~ = 3/2 and a prefactor Ko = 3.36. 

20. 

10- 

o.~ 
0.0 

""l l / '  ." }'/ ' 

/ Ill 

0.2 0.4 0.6 
Displacement (ram) 

Figure 5 The three loading curves of Fig. 1 superposed by shifting 
along the displacement axis display the same linear end behaviour. 
The values of displacement (d, included) on the x axis are those of 
the reference curve (not shifted). 

3.2. Breakage behav iour  
In order to avoid fluctuations introduced by the 
crumbling process we shifted the load curves obtained 
for each of the 400 tested grains along the axis of 
displacement in order to superpose their end parts. 
A linear function, with a slope [~, fits the different 
curves correctly, as shown in Fig. 5. It was found that 
the slope of linear behaviour is independent of grain 
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size and a mean stiffness 13 equal to 300 _+ 50 kgm -~ 
was determined. 

4. Surface crushing 
Using this linear relation between load F and dis- 
placement d and the corresponding measured break- 
age values Fr and d ,  we compute, for each tested 
grain, what we call the "crushing end displacement" 
d e as  

d e = d r - F r / ~  ( 7 )  

de is easily determined as the  extrapolated displace- 
ment (at zero load) of the linear breakage behaviour of 
the static loading tests. 
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4.1. Cyclic loading and incremental 
displacement 

To show that d e is a good measure of the irreversible 
part of the grain strain variation, the compressive load 
test is performed as a series of successive load-unload 
cycles. Each cycle consists of a loading (up to load F) 
followed by a complete unloading (down to zero) of 
the grain under test. The maximal load reached at the 
end of the i-th cycle is given by i*AF. The increase of 
load AF between two successive cycles represents 
a given percentage (5% in our tests) of the expected 
average breakage load Fc, which is a function of the 
grain diameter (Equation 6). We define the irreversible 
incremental displacement Ad, at load F, as the differ- 
ence in measured crosshead displacement (at zero load 
- end of cycle) between two successive cycles (Fig. 6). 
The evolution of Ad as a function of F follows the 
grain irreversible deformation and then characterizes 
the crushing stage. Therefore we observe (Fig. 6 - 
insert), as expected, large values for Ad during the 
crushing phase, then low variations beyond. The 
graph Ad(F) - at given AF, F is proportional to the 
cycle number - shows the same behaviour, indepen- 
dent of grain size. This curve (main graph) clearly 
displays the crumbling phase and the low value of the 
reduced displacement during the final cycles. This 
allows us to neglect the small variation of the irrevers- 
ible part of the displacement during this last stage - Ad 
would be strictly zero valued for a purely elastic ma- 
terial - and to identify d~ with the irreversible com- 
ponent of the displacement (mainly generated by the 
crushing process). 

In order to confirm this analysis we tested grains 
whose contact faces were previously planed with ab- 
rasive paper. Loading curves looked as expected, the 
central part of the graph, which corresponds to the 
crumbling phase, disappeared, and loading curves ex- 
hibited only linear behaviour up to fracture. 

In our experiments we observed that the crushing 
stage (first part of the compressive test curve) is always 
associated with the local crumbling of the areas of 
contact between grain and crosshead. More and more 
asperities get in contact with the testing machine 
crosshead surfaces, offering increasing force to the 
flattening of the grain surface, but the compressive 
load increases moderately compared with the dis- 
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Figure 6 The main graph represents the typical response of a grain 
to a cyclic compressive loading test (unloading part of cycle not 
drawn for clarity). The maximal load reached at the end of the i-th 
cycle is given by i*AF, where AF is a given percentage (5% in our 
tests) of the theoretical breakage load Fo, a known function of the 
grain diameter. The insert represents the evolution of the incremen- 
tal displacement as a function of the cycle number. 

placement. We can now identify the thickness of the 
crumbly skin of our model of grain to half of the 
crushing end displacement de. 

4.2. C o n t a c t  s e t t i n g  
If we enlarge the force - displacement curve at a very 
low level of load (Fig. 7) we observe fully reversible 
elastic - but non-linear behaviour which ends when 
the first asperity crumbles. Due to the early occur- 
rence of crumbling this first stage is difficult to analyse. 
However, if we take into account only the first points 
of the graph inside the circle drawn near the origin 
on Fig. 1 - it is possible to define a power law relation 
F oc d ~" between the load F and the displacement 
d with an experimental exponent X ~ 1.5-2.0. The 
exponent of the elastic behaviour depends on the 
shape of the first asperity. The flattening law is consis- 
tent with the prediction of Hertz's theory of contact 
[-8, 9] which gives exponents ranging from 1.5 (spher- 
ical punch) to 2 (wedge shaped punch). 

4.3. Scaling law 
The grain compression at the end of the crushing stage 
"crushing end displacement" de varies with diameter 
dp as 

do = v r  (8) 

The mean value <7) of the distribution of 7 (Fig. 8) is 
equal to 0.037, and the standard deviation is equal to 
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Figure 7 The experimental exponent ;L ~ 1.5-2.0 of the F oc d ~ 
relation describing the elastic behaviour at the beginning (area 
inside the circle drawn on Fig. 1) of the load-displacement curve 
depends on the shape of the first asperity. The flattening law is 
consistent with the prediction of Hertz's theory of contact which 
gives exponents ranging from 1.5 (spherical punch) to 2 (wedge 
shaped punch). 
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Figure 8 Above: histogram of the ratio y: "crushing end displace- 
ment" de to grain diameter ~). Below: Normalized distributions of 
grain diameter for five values, 0.015, 0.035, 0.055, 0.075 and 0.115, 
covering the variation range of 3'- 

0.024. The dispersion on de values is important but, as 
shown in the lower part of Fig. 8, the normalized 
distributions of grain diameter - for different values of 
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the factor ? covering its range of variation - spread 
over the diameter range of the tested grains. This 
suggests a dispersion law independent of the diameter 

for the prefactor ?. 

4.4. C o n t a c t  a r e a  m e a s u r e m e n t s  
As explained above the compressive load increases 
moderately compared with the displacement during 
the crushing stage of the compressive test. All the 
grain deformation is concentrated in the vicinity of the 
areas of contact and the measure of the scaling law of 
the contact area with the grain diameter d~ is another 
way to characterize the crushing process. 

It is not possible to measure the contact areas at the 
end of the crumbling stage, since this would imply 
removing the grain from the testing device. But, as 
shown in Fig. 6, the grain strain remains very low 
between crushing and breakage (quasi-zero incremen- 
tal displacement). As a consequence the increase of the 
surface of contact remains very low and we can ident- 
ify, with a good approximation, the contact area at the 
end of the crumbling process and at breakage. We 
reconstructed the tested grain from its fragments in 
order to measure the contact areas. It is rather difficult 
to measure precisely these areas because we have to 
restore the grain after breakage; however we observed 
that they depend on the grain size but they are inde- 
pendent of the extent of the crumbling phase. For  each 
reconstituted grain we measure the values St and $2 of 
the two contact areas and compute the "equivalent 
diameter" ~e of the contact area so that the area of 
a circular disk of diameter dpe is equal to the average 
contact area. As shown in Fig. 9 the equivalent 
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Figure 9 Contact area "equivalent diameter" ~o as a function of 
grain diameter ~. This linear relation is in good agreement with the 
previously reported linear variation of d e with d 2. For a spherical 
grain (see geometry in Fig. 2) the slope k and the mean value <?> of 
the ratio de to d? are geometrically related by: 2<7> = k z. The value 
<y)  = 0.034 deduced from k = 0.26 and the previous mentioned 
value <y> = 0.037 are in good agreement. 



diameter doe of the contact area is approximately lin- 
early related to the grain diameter dO 

doe = kdo (9) 

with k ~ 0.26. This linear relation is in agreement with 
the previously reported linear variation of de with do. 
For a spherical grain (see geometry on Fig. 2), the 
three parameters de, doe and do are related in 

�89 2 first approximation by: dode ~1do2, or ( 7 ) = -  . 
The previously mentioned value ( 2 / ) =  0.037, and 
k = 0.26; thus lk2 = 0.034 is in good agreement. 

5. Conclusion 
Before attempting a modelling approach of crushing 
mechanisms of cement clinker it was necessary to 
characterize the mechanical behaviour of this material 
up to breakage. The diametrical compressive test 
was chosen, as it is the closest to the typical loading 
within a packing of grains and a very convenient 
experimental approach for the analysis of mechanical 
behaviour law up to fragmentation of brittle granular 
material. 

Analysis of the loading curve displays two stages, 
each corresponding to mechanical behaviour we can 
identify: 

�9 crushing: this phase corresponds to the creation of 
contact areas, a local process, by crumbling asper- 
ities of the grain in contact with the crosshead. The 
average diameter of the contact area varies linearly 
with the grain size. The grain deformation at the 
end of this phase also increases linearly as a func- 
tion of the grain size. This leads to a simple geomet- 
rical model. We identify also the process of setting 
the contact points: the appearance of the loading 
curve at low load level (first few points) is the same 
for all the grains. The load-displacement relation 
follows a power law with an exponent ranging from 
1.5 to 2. The progressive flattening of asperities 
causes a correlative increase of a number of contact 
points. 

�9 up to the fragmentation of the grain (in fact creation 
of a cross crack): introducing normalized displace- 
ment to take into account the crumbling effect, the 
grain exhibits a linear load displacement law up to 
breakage. As for other brittle materials such a s  

glass, the breakage force increases as a power law of 
the grain diameter with an exponent of 1.5. The 
dispersion of prefactors that we observed in the 
experiments results is analysed according to 

F(K)  = (K/Ko)~/1 + (K/Ko) ~ 

Modelling of the grain as a hard brittle core of dia- 
meter do surrounded by a thin crumbly skin of thick- 
ness de~2 (Fig. 2) leads us to associate the contact 
setting with the crumbly skin behaviour and the 
breakage with the brittle core behaviour. This analysis 
allows us to define K0 as an intrinsic characteristic 
parameter proportional to the tenacity of the material. 

This work allowed us to characterize mechanical 
behaviour of cement clinker. This is a study which is 
necessary to analyse the crushing mechanisms in 
packed beds. Experimental results on the cohesion of 
packed beds will be reported in a forthcoming paper. 
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